На входе анализа – временной ряд, т.е. собранные с некоторой периодичностью (ежедневно, еженедельно, ежемесячно) данные по какому-либо показателю (например, объём продаж). Временные ряды часто бывают подвержены влиянию одного или нескольких следующих факторов:
1) Тренд – плавно изменяющаяся, не циклическая компонента, описывающая чистое влияние долговременных факторов, эффект которых сказывается постепенно.
2) Сезонная компонента временного ряда описывает поведение, изменяющееся регулярно в течение заданного периода (года, месяца, недели, дня). Она состоит из последовательности почти повторяющихся циклов.
3) Циклическая компонента временного ряда описывает относительно длительные периоды подъема и спада. Она состоит из циклов, которые меняются по амплитуде и протяжённости.
4) Автокорреляция – корреляция временного ряда с самим собой. Возникает тогда, когда каждое соседнее значение связано с предыдущим (например, запоминаемость рекламы).
Задача анализа состоит в выявлении этих факторов, нейтрализации их эффекта и построении модели, наилучшим образом описывающей временной ряд. При моделировании используются такие методы, как удаление тренда, декомпозиция сезонности, экспоненциальное сглаживание, анализ автокорреляции, построение авторегрессии и скользящего среднего, и т.д.
Модель «чистого» временного ряда, из которого удалены влияние тренда, сезонности, цикличности, автокорреляции и других процессов. Такая модель служит для построения прогнозов и доверительных интервалов к ним.
Многие продукты и рынки подвержены влиянию сезонного фактора, имеют тенденции и циклы развития. Анализ временных рядов помогает отделить влияние общих факторов от мер, предпринятых маркетингом компании.