Radar —

Маркетинговые исследования и консультирование

Регрессионный анализ

Определение влияния независимых переменных на зависимую

Для чего это нужно?

  • Определение факторов, влияющих на зависимую переменную (например, что в наибольшей степени влияет на капитал бренда).
  • Выявление важных и неважных факторов, анализ заявленной и реальной важности.
  • Построение регрессионных уравнений и моделей.

Как это работает?

На входе анализа – одна зависимая переменная и несколько независимых переменных, которые могут влиять на зависимую. Все переменные должны быть измерены по интервальным или дихотомическим шкалам. В случае, если в анализ необходимо включить порядковые переменные (например, степень согласия с рядом высказываний, измеренную по 5-балльной шкале), их необходимо предварительно оцифровать (с помощью статистического метода перекодировать в интервальные).

Алгоритм простой линейной регрессии выявляет степени влияния независимых переменных на зависимую и выдаёт регрессионное уравнение вида Y = а0 + b1X1 + b2X2…+…bnXn, где Y – зависимая переменная, а0 – константа, среднее значение Y, если каждая независимая переменная равна 0, Xn независимые переменные, bn – коэффициенты влияния независимых.

Что получаем в итоге?

Коэффициенты влияния показывают, какие из независимых переменных влияют на зависимую положительно, а какие отрицательно, а также какова степень этого влияния. В простой линейной регрессии коэффициент, больший 0, свидетельствует о положительном влиянии данной независимой переменной на зависимую, а коэффициент, меньший 0 – об отрицательной.

С помощью регрессионного уравнения можно моделировать разные комбинации независимых переменных и предсказывать, какое значение примет в этих случаях зависимая переменная.

Каковы преимущества метода?

Выявление факторов, способных наиболее сильно влиять на целевые маркетинговые показатели. В итоге мы получаем возможность концентрировать усилия на развитии тех параметров, которые способны улучшить ситуацию, и устранении тех, которые ухудшают целевой показатель.

Как еще больше узнать о методе?

  • Подпишитесь на нашу страницу в Facebook или Вконтакте и следите за нашими открытыми лекциями и выступлениями на конференциях. Если это научные конференции, как правило, участие в них свободное.
  • Если вы студент или выпускник НИУ ВШЭ, постарайтесь попасть на лекцию к Марку Шафиру в рамках курса «Современные методы анализа данных».
  • Закажите нам исследование с использованием этого метода.